Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS).

Identifieur interne : 002968 ( Main/Exploration ); précédent : 002967; suivant : 002969

Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS).

Auteurs : Christopher M. Shuford [États-Unis] ; Ronald R. Sederoff ; Vincent L. Chiang ; David C. Muddiman

Source :

RBID : pubmed:22595788

Descripteurs français

English descriptors

Abstract

No consensus has been reached on the proper time to add stable-isotope labeled (SIL) peptides in protein cleavage isotope dilution mass spectrometry workflows. While quantifying 24 monolignol pathway enzymes in the xylem tissue of Populus trichocarpa, we compared the protein concentrations obtained when adding the SIL standard peptides concurrently with the enzyme or after quenching of the digestion (i.e. postdigestion) and observed discrepancies for nearly all tryptic peptides investigated. In some cases, greater than 30-fold differences were observed. To explain these differences and potentially correct for them, we developed a mathematical model based on pseudo-first-order kinetics to account for the dynamic production and decay (e.g. degradation and precipitation) of the native peptide targets in conjunction with the decay of the SIL peptide standards. A time course study of the digests confirmed the results predicted by the proposed model and revealed that the discrepancy between concurrent and postdigestion introduction of the SIL standards was related to differential decay experienced by the SIL peptide and the native peptide in each method. Given these results, we propose concurrent introduction of the SIL peptide is most appropriate, though not free from bias. Mathematical modeling of this method reveals that overestimation of protein quantities would still result when rapid peptide decay occurs and that this bias would be further exaggerated by slow proteolysis. We derive a simple equation to estimate the bias for each peptide based on the relative rates of production and decay. According to this equation, nearly half of the peptides evaluated here were estimated to have quantitative errors greater than 10% and in a few cases over 100%. We conclude that the instability of peptides can often significantly bias the protein quantities measured in protein cleavage isotope dilution mass spectrometry-based assays and suggest peptide stability be made a priority when selecting peptides to use for quantification.

DOI: 10.1074/mcp.O112.017145
PubMed: 22595788
PubMed Central: PMC3434783


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS).</title>
<author>
<name sortKey="Shuford, Christopher M" sort="Shuford, Christopher M" uniqKey="Shuford C" first="Christopher M" last="Shuford">Christopher M. Shuford</name>
<affiliation wicri:level="1">
<nlm:affiliation>W M Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W M Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695</wicri:regionArea>
<wicri:noRegion>North Carolina 27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
<author>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22595788</idno>
<idno type="pmid">22595788</idno>
<idno type="doi">10.1074/mcp.O112.017145</idno>
<idno type="pmc">PMC3434783</idno>
<idno type="wicri:Area/Main/Corpus">002A43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A43</idno>
<idno type="wicri:Area/Main/Curation">002A43</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A43</idno>
<idno type="wicri:Area/Main/Exploration">002A43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS).</title>
<author>
<name sortKey="Shuford, Christopher M" sort="Shuford, Christopher M" uniqKey="Shuford C" first="Christopher M" last="Shuford">Christopher M. Shuford</name>
<affiliation wicri:level="1">
<nlm:affiliation>W M Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W M Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695</wicri:regionArea>
<wicri:noRegion>North Carolina 27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
<author>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
</author>
</analytic>
<series>
<title level="j">Molecular & cellular proteomics : MCP</title>
<idno type="eISSN">1535-9484</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Indicator Dilution Techniques (MeSH)</term>
<term>Isotope Labeling (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Peptide Biosynthesis (MeSH)</term>
<term>Peptides (analysis)</term>
<term>Peptides (chemistry)</term>
<term>Peptides (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (metabolism)</term>
<term>Proteolysis (MeSH)</term>
<term>Xylem (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biosynthèse des peptides (MeSH)</term>
<term>Marquage isotopique (MeSH)</term>
<term>Peptides (analyse)</term>
<term>Peptides (composition chimique)</term>
<term>Peptides (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéolyse (MeSH)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Techniques de dilution d'indicateur (MeSH)</term>
<term>Xylème (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peptides</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Indicator Dilution Techniques</term>
<term>Isotope Labeling</term>
<term>Mass Spectrometry</term>
<term>Peptide Biosynthesis</term>
<term>Proteolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des peptides</term>
<term>Marquage isotopique</term>
<term>Protéolyse</term>
<term>Spectrométrie de masse</term>
<term>Techniques de dilution d'indicateur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">No consensus has been reached on the proper time to add stable-isotope labeled (SIL) peptides in protein cleavage isotope dilution mass spectrometry workflows. While quantifying 24 monolignol pathway enzymes in the xylem tissue of Populus trichocarpa, we compared the protein concentrations obtained when adding the SIL standard peptides concurrently with the enzyme or after quenching of the digestion (i.e. postdigestion) and observed discrepancies for nearly all tryptic peptides investigated. In some cases, greater than 30-fold differences were observed. To explain these differences and potentially correct for them, we developed a mathematical model based on pseudo-first-order kinetics to account for the dynamic production and decay (e.g. degradation and precipitation) of the native peptide targets in conjunction with the decay of the SIL peptide standards. A time course study of the digests confirmed the results predicted by the proposed model and revealed that the discrepancy between concurrent and postdigestion introduction of the SIL standards was related to differential decay experienced by the SIL peptide and the native peptide in each method. Given these results, we propose concurrent introduction of the SIL peptide is most appropriate, though not free from bias. Mathematical modeling of this method reveals that overestimation of protein quantities would still result when rapid peptide decay occurs and that this bias would be further exaggerated by slow proteolysis. We derive a simple equation to estimate the bias for each peptide based on the relative rates of production and decay. According to this equation, nearly half of the peptides evaluated here were estimated to have quantitative errors greater than 10% and in a few cases over 100%. We conclude that the instability of peptides can often significantly bias the protein quantities measured in protein cleavage isotope dilution mass spectrometry-based assays and suggest peptide stability be made a priority when selecting peptides to use for quantification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22595788</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1535-9484</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular & cellular proteomics : MCP</Title>
<ISOAbbreviation>Mol Cell Proteomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS).</ArticleTitle>
<Pagination>
<MedlinePgn>814-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/mcp.O112.017145</ELocationID>
<Abstract>
<AbstractText>No consensus has been reached on the proper time to add stable-isotope labeled (SIL) peptides in protein cleavage isotope dilution mass spectrometry workflows. While quantifying 24 monolignol pathway enzymes in the xylem tissue of Populus trichocarpa, we compared the protein concentrations obtained when adding the SIL standard peptides concurrently with the enzyme or after quenching of the digestion (i.e. postdigestion) and observed discrepancies for nearly all tryptic peptides investigated. In some cases, greater than 30-fold differences were observed. To explain these differences and potentially correct for them, we developed a mathematical model based on pseudo-first-order kinetics to account for the dynamic production and decay (e.g. degradation and precipitation) of the native peptide targets in conjunction with the decay of the SIL peptide standards. A time course study of the digests confirmed the results predicted by the proposed model and revealed that the discrepancy between concurrent and postdigestion introduction of the SIL standards was related to differential decay experienced by the SIL peptide and the native peptide in each method. Given these results, we propose concurrent introduction of the SIL peptide is most appropriate, though not free from bias. Mathematical modeling of this method reveals that overestimation of protein quantities would still result when rapid peptide decay occurs and that this bias would be further exaggerated by slow proteolysis. We derive a simple equation to estimate the bias for each peptide based on the relative rates of production and decay. According to this equation, nearly half of the peptides evaluated here were estimated to have quantitative errors greater than 10% and in a few cases over 100%. We conclude that the instability of peptides can often significantly bias the protein quantities measured in protein cleavage isotope dilution mass spectrometry-based assays and suggest peptide stability be made a priority when selecting peptides to use for quantification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shuford</LastName>
<ForeName>Christopher M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>W M Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sederoff</LastName>
<ForeName>Ronald R</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muddiman</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Proteomics</MedlineTA>
<NlmUniqueID>101125647</NlmUniqueID>
<ISSNLinking>1535-9476</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007201" MajorTopicYN="N">Indicator Dilution Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010452" MajorTopicYN="N">Peptide Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="Y">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22595788</ArticleId>
<ArticleId IdType="pii">O112.017145</ArticleId>
<ArticleId IdType="doi">10.1074/mcp.O112.017145</ArticleId>
<ArticleId IdType="pmc">PMC3434783</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2003 Feb 1;75(3):445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12585469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Aug;8(8):1860-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):144-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2004 May-Jun;3(3):658-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Jul 21;72(5):740-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19341828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Feb;8(2):787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19105742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Dec;6(12):2139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2008 Jun 1;80(11):4154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18447320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2005 Aug;2(8):587-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16094383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Mass Spectrom. 1991 Mar;20(3):130-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2069984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2004 May-Jun;3(3):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2011 Aug;54(4):351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21683145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1974 May;59(1):277-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4407487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Apr 1;26(7):966-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2004 Mar-Apr;3(2):235-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15113099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Feb;8(2):1085-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2011 Feb;6(2):175-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21293459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):359-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(2):1029-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6940-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2008 Jun;9(4):263-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19452043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 1996 Oct;42(10):1676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8855153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2008;4:222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Apr;4(4):1175-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15048997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1965 Jun;4(6):1030-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5839993</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Shuford, Christopher M" sort="Shuford, Christopher M" uniqKey="Shuford C" first="Christopher M" last="Shuford">Christopher M. Shuford</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002968 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002968 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22595788
   |texte=   Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22595788" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020